-
自動車用バッテリーブラケットにおけるPP充填40%長ガラス繊維の応用
2025-06-17
プロジェクトの背景 新エネルギー車の電気システムにおける高度な統合とモジュール化の傾向に伴い、 バッテリー構造部品 車両プラットフォームにおいて、バッテリーブラケットはますます重要な役割を果たしています。バッテリーモジュールの支持、固定、保護の主要部品として、バッテリーブラケットは 高い機械的強度、寸法安定性、環境老化耐性 業界の要求を満たしながら 軽量設計、コスト削減、リサイクル性 。 写真の製品は、当社の PP マトリックスに 40% の長ガラス繊維 (PP-LGF40) を充填して射出成形で製造された、電気自動車用の一般的なバッテリー ブラケットで、シャーシやバッテリー コンパートメントの取り付けシステムに広く使用されています。 製品構造設計の特徴 耐荷重設計 : 全体構造は複数のX字型斜めリブ+ダイヤモンドグリッド補強材を採用し、軽量化を図りながら十分な剛性を実現し、特に広い平面支...
もっと見る
-
射出成形欠陥:繊維の浮き上がり - 根本原因と解決策
2025-06-20
ガラス繊維強化材料の射出成形プロセスでは、 繊維浮遊 最も一般的な表面欠陥の一つです。部品のガラス繊維が露出することで、表面に凹凸が生じます。この問題は製品の外観を損なうだけでなく、塗装、コーティング、電気めっきなどの二次工程にも悪影響を及ぼす可能性があります。本日は、繊維浮きの根本原因を深く掘り下げ、効果的な解決策を探ります。 ガラス繊維強化製品の表面 1. ファイバー浮遊問題の原因 繊維の浮遊は、主に次の 4 つの重要な側面を含む複数の要因が相互作用した結果です。 射出成形プロセス --充填速度が遅い、溶融温度が低い、金型温度が低い 金型設計 --不十分なベント、ホットランナー温度の問題、不合理な流動長、不適切なゲート設計 機械の性能 --機械の能力不足または動作状態が悪い 材料特性 -- 異常な水分含有量、粘度の変化、ガラス繊維含有量または種類の不一致 2. 射出成形プロセス要因の詳...
もっと見る
-
自動車内装の臭気:材料エンジニアにとって避けられない課題
2025-07-10
臭い 感覚的な体験であると同時に、品質を測る知覚基準でもあります。 車内という限られた空間では、プラスチックから漂う「新車の匂い」は高級感の象徴ではなく、むしろ消費者の大きな不満の原因となることが多いのです。 本稿は、工学の実践に基づき、臭気の発生源、メカニズム、分析手法、そして臭気制御戦略を体系的に探求する。材料エンジニアを支援することを目的としている。 自動車内装材の設計時に臭気リスクを発生源から低減 。 プラスチックの臭いはどこから来るのでしょうか? プラスチック材料中の臭気分子は主に揮発性有機化合物(VOC)の形で存在し、それは 3つの主なメカニズム : 1. 拡散: 未反応のモノマーと小分子は、材料内部から表面へと移動します。プラスチック中のVOCは、フィックの拡散の第二法則に従います。 例えば、ポリプロピレン(PP)におけるアルデヒドの拡散係数は約10⁻⁹cm²/sです。23℃...
もっと見る
-
PPSの科学と強み:ポリフェニレンサルファイドの深掘り
2025-07-21
導入 ポリフェニレンサルファイド(PPS)は半結晶性の熱可塑性樹脂である。 エンジニアリングポリマー ベンゼン環と硫黄原子が交互に分子骨格に配列した構造式は-[Ph-S]n-(Phはフェニル環を表す)である。このユニークな組み合わせは 剛性と安定性 PPSは「 プラスチックゴールド 。」 PPS長ガラス繊維強化 PPSの4つのコア特性 1. 高温耐性 熱たわみ温度(HDT): ≥260°C(非強化)、連続使用温度は最大220°Cです。 耐熱老化性: 200℃に1,000時間さらされた後でも機械的強度の80%以上を維持します。 2. 化学的安定性 耐腐食性: PPSは酸、塩基、有機溶剤(ガソリン、エタノールなど)に耐性があります。濃硫酸や濃硝酸などの強酸化性媒体中では、腐食が緩やかです。 耐加水分解性: PPS は高温高圧蒸気環境で優れた安定性を発揮するため、深海用途や化学的に攻撃的な産業環...
もっと見る
-
ポリプロピレンを本当に耐火性にするには、どれくらいのガラス繊維が必要ですか?
2025-08-29
現代の産業分野では、 ガラス繊維強化ポリプロピレン(PP/GF) は、低密度、優れた耐熱性と耐クリープ性、そして高いコストパフォーマンス比を備え、次のような業界で「新星」となっています。 電子機器、航空宇宙、自動車製造 この材料は、 軽量・薄肉部品 として 鉄鋼や従来のエンジニアリングプラスチックの代替品 。 しかし、ポリプロピレン自体は可燃性材料であり、限界酸素指数(LOI)は約17.0%に過ぎません。燃焼時には大量の炎滴が発生し、かなりの熱を放出します。ガラス繊維(GF)を添加することで、この滴下現象はある程度緩和されますが、GFのいわゆる「ウィック効果」により燃焼時間が長くなり、発熱量も増加します。そのため、安全性が重視される用途では、PP/GFの難燃処理が不可欠です。 かつて広く使用されていた臭素・アンチモン系難燃剤は、燃焼時に発生する有毒な煙のために、国内外で規制の対象となってい...
もっと見る
-
複合接合方法:種類と重要な考慮事項
2025-09-01
概要 複合接合技術は 重要だが比較的弱いリンク 複合構造の設計と製造において、複合材料は異方性、脆性、および低い層間強度を有するため、接合設計は金属構造とは大きく異なり、特別な注意が必要です。主な接合方法は以下の3つのグループに分類できます。 1. 機械的接合 原理: 複合材同士または複合材と金属の部品を接続するために機械的なファスナー(ボルト、ネジ、リベットなど)を使用します。通常はドリルで穴を開ける必要があります。 利点: - 高い信頼性と検査性: 接合部の状態が目に見えるため、点検やメンテナンスが容易になります。 - 荷重伝達能力: 主な耐荷重構造または高荷重領域に適しています。 - 表面処理の必要性が低い 接着剤による接合に比べて。 - 環境要因に対する感受性が低い 湿度や温度など。 デメリット: - 応力集中: 掘削により繊維の連続性が破壊され、穴の端に応力が集中し、これが故障の...
もっと見る